
To be presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

1

Determining When to Use an Agent-Oriented Software
Engineering Paradigm

Scott A. O’Malley Scott A. DeLoach
Department of Electrical and Computer Engineering

Air Force Institute Of Technology
Wright-Patterson Air Force Base, Ohio 45433-7765

(937) 255-3636 x4581
scott.omalley@afit.edu sdeloach@computer.org

ABSTRACT
With the emergence of agent-oriented software engineering
techniques, software engineers have a new way of conceptualizing
complex distributed software requirements. In order to determine
the most appropriate software engineering methodology, a set of
defining criteria is required. In this paper, we describe the method
taken to determine these criteria, as well as a technique developed
to assist software engineers with the selection of a software
engineering methodology.

1. INTRODUCTION
Software engineers have a number of options when it comes to
developing solutions for complex, distributed software
requirements. One emerging technique is the development of
multiagent systems. There are a number of reasons a software
developer may consider a multiagent system. In particular,
multiagent systems can provide benefits such as processing speed-
up, reduced communication bandwidth, and increased reliability
[7]. However, the academic community, as well as industry, is
still trying to determine which problems call for a multiagent
approach [5, 8].

Once the decision to use a multiagent design is made, a number of
methodologies exist for building multiagent systems [4]. The
methodologies range from extensions of existing object-oriented
methodologies to new agent-oriented techniques, which offer a
new perspective to developing multiagent systems by increasing
the level of abstraction the developer uses to analyze and design
the system. As agent-oriented software engineering techniques
are developed, software engineers are faced with selecting an
approach that is best suited for the problem they are solving.

Our research at the Air Force Institute of Technology has focused
on providing software engineers and managers with a decision-
making framework to determine an appropriate methodology
when faced with a set of viable software engineering methodology
alternatives [9]. This paper focuses on the method we applied for
developing this framework. The primary challenge in developing
this framework was selecting a valid set of criteria upon which to
base the decision.

The remainder of this section addresses other approaches to
determining when an agent-oriented approach is appropriate as
well as techniques for classifying software engineering
methodologies. Section 2 describes the process we used to define
the criteria for the decision-making framework. Section 3
describes a survey that we conducted in November and December
2000 to validate that criteria. Section 4 discusses the results of the
survey. Section 5 provides the context in which we applied the
criteria to the decision-making framework. Finally, Section 6
presents our conclusions.

1.1 Related Techniques
The strategy taken by Jennings and Wooldridge was to provide
“intellectual justification” [5] for the validity of the agent-oriented
techniques. Their justification, however, comes from a qualitative
analysis of how well the technique addresses the principles that
allow software engineering techniques to deal with complex
problems proposed by Booch: abstraction, decomposition, and
hierarchy [1,5]. They leave “understanding of the situations in
which agent solutions are appropriate” as an outstanding issue [5].

The European Institute for Research and Strategic Studies in
Telecommunications (EURESCOM) used a different strategy in
1999 when they began a project to explore the use of agent
technologies within the European telecommunications industry.
One of the project’s three objectives is to “define guidance for the
identification of application areas where an agent-based approach
is better suited than other approaches” [8]. The consortium
produced the following five guidelines to help a developer decide
whether or not an agent-oriented approach is appropriate [8]:

1. An agent-oriented approach is beneficial in situations
where complex/diverse types of communication are
required.

2. An agent-oriented approach is beneficial when the system
must perform well in situations where it is not
practical/possible to specify its behavior on a case-by-case
basis.

3. An agent-oriented approach is beneficial in situations
involving negotiation, co-operation and competition
among different entities.

4. An agent-oriented approach is beneficial when the system
must act autonomously.

This paper is authored by employees of the United States
Government and is in the public domain.
AOSE ’01, May 28- June 2, 2001, Montreal, Quebec, Canada.
ACM 1-58113-000-0/00/0000…$5.00.

To be presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

2

5. An agent-oriented approach is beneficial when the system
is expected to be expanded or modified or when the
purpose of the system is expected to change.

These guidelines are a good beginning in determining whether or
not an agent-oriented approach is well suited to a particular
problem. However, based on these guidelines alone, there is still
no clear answer.

1.2 Software Engineering Methodology
Classification

In 1988, the Software Engineering Institute (SEI) presented a set
of guidelines for assessing software development methods for
real-time systems [12]. The guidelines are a five-step process for
evaluating different methodologies. The five steps of the
guidelines from [12] are given below:

1. Needs Analysis – Determine the important characteristics
of the system to be developed and how individual methods
help developers deal with those characteristics.

2. Constraint Identification – Identify the constraints
imposed on the permitted solutions and determine how
individual methods help developers deal with those
constraints.

3. User Requirements – Determine the general usage
characteristics of the individual methods.

4. Management Issues – Determine the support provided by
the method to those who must manage the development
process as well as the costs and benefits of adopting and
using the method.

5. Introduction Plan – Develop an understanding of the
issues that the method does not address and a plan to
augment the method in those areas where it is deficient.

Based on these steps, the consortium developed questions to help
analyze prospective methodologies. Some of the questions are
meant to be rhetorical, while others require an in-depth
knowledge of the methodology and its representations. The
purpose of the questions is to make the assessor form an opinion
regarding the methodology; however, this process does not over-
simplify the problem of selecting a methodology. The questions
do provide a framework to present a systematic evaluation
process.

We based our assessment process on SEI’s existing work in
classifying software methods, which includes three major areas of
characterization [3]. The SEI process involves determining what
a method is, what a method does, and what issues the method
addresses. SEI’s three areas of characterization are:

• Technical Characteristics
• Management Characteristics
• Usage Characteristics

The Technical Characteristics look at classifying the technical
characteristics of the software development through the three
stages of development (specification, design, and
implementation). The characteristics of the software problem
dealt with during the specification—or analysis—phase relate to
the behavioral and functional views of the problem. These views
are carried through to the other stages of the system development.
During the design phase, the behavioral and functional views are

mapped into the behavioral and functional characteristics of the
function. Effective methods allow for smooth transition across
these stages and allow the ability to trace functional and
behavioral characteristics through all stages of development.

The next set of characteristics, Management, is important for
considering the support that a method provides to management
when evaluating different methods. The characterization should
consider how well the method deals with typical management and
project issues such as estimating, planning and reviewing. The
characterization should also look at how the method is related to
the needs and processes that exist within the organization.
Management practices are often a difficult thing to change and
identifying potential changes is an important factor in adopting a
new methodology [3].

The third set, Usage Characteristics, captures and describes the
characteristics of the methodology that will affect its use by an
organization. These characteristics include the basis for the
methodology, the availability of training, and the availability of
tool support. This characterization is important in understanding
the magnitude of change involved with selection of a
methodology.

2. DEFINING DECISION CRITERIA
The challenge of selecting an appropriate methodology for a
software development project is in understanding the differences
between the methodologies. The ability to classify these
methodologies is crucial to the understanding.

With the characteristics developed in [3] in mind, a set of criteria
was developed. For the framework defined in [9], we combined
the management and usage characteristics into one category,
called Management Issues. The technical characteristics of the
methodology are captured in the Program Requirements category.
Each of these categories is discussed in detail below.

2.1 Management Issues
As indicated above, this category is closely related to the
management and usage characteristics as defined by [3]. Because
of their universal applicability, many of the issues addressed that
pertain to this category are taken from the [12], as the
management and usage issues for selecting a software
development method for real-time systems are practical for any
type of system. Below is the initial set of issues selected for this
category.

• Cost of Acquiring the Methodology (Meth)
• Cost of Acquiring Support Tools (Tool)
• Availability of Reusable Components (Reuse)
• Effects on Organizational Business Practices (Org)
• Compliance with Standards (Stan)
• Traceability of Changes (Chan)

The first two issues deal with costs involved with selecting the
methodology. Specifically, Cost of Acquiring the Methodology
involves the costs associated with adopting the methodology for
use. Factors that impact this issue include the costs incurred by
sending personnel to available training, the purchase of reference
material, etc. Additionally, Cost of Acquiring Support Tools deals
with the costs incurred by purchasing tools that support the
methodology. The tools include CASE tools as well as
programming development tools. Further, the cost of factors such

To be presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

3

as additional hardware/software to operate the tools, maintenance
costs for the tools, and training, should be included.

Another issue that indirectly deals with cost is Availability of
Reusable Components. The incorporation of previously
developed software into a new system reduces the overall design,
implementation, and testing phases for software development.
This category is used to measure the methodology’s ability to
incorporate predefined components into the system.

The final three issues reflect usage issues. First, Effects on
Organizational Business Practices measures the impact the
adoption of a methodology will have on the existing business
practices of the organization. The business practice includes ideas
such as tracking development progress through milestones,
reports, and customer interactions. Next, Compliance with
Standards is proposed to determine how well an alternative is able
to meet standards, whether local to the organization or outside the
organization such as national or international. Finally, the last
issue in this category, Traceability of Changes, measures the
methodology’s support to trace changes throughout the
development lifecycle.

2.2 Project Requirements
The second category of criteria, Project Requirements, is related
to the technical characteristics. For this category, the criteria for
real-time systems are not directly relevant. In order to derive a set
of criteria, we turned to current research and identified a number
of technical issues that relate to complex software systems [7, 11].
The issues selected are:

• Legacy System Integration (Leg)
• Distribution (Dis)
• Environment (Env)
• Dynamic System Structure (Struc)
• Interaction (Int)
• Scalability (Scal)
• Agility and Robustness (Agi)

The first three issues in this category relate to constraints of the
problem. First, Legacy System Integration is a measurement of
the methodology’s ability to support for the incorporation of
previously developed systems, commonly called legacy systems,
with the new project requirement. Next, Distribution focuses on
the ability to support the modeling of distributed aspects of the
problem. Distribution can occur in the form of processors,
resources, or information. Then, Environment measures the
methodology’s support of developing software systems for
environments that have heterogeneous hardware or software.

The next three issues in the category are Dynamic System
Structure, Scalability, and Agility and Robustness. Dynamic
System Structure represents the methodology’s ability to develop
software capable of handling the introduction and removal of
system components in a manner that is not detrimental to the users
of the system is considered in this category. Scalability, similar to
Dynamic System Structure, measures the methodology’s ability to
develop software capable of handling the introduction and
removal of system-level resources while minimizing the impact
on users. Last, Agility and Robustness focuses on the
methodology’s ability to create flexible software systems that will
be resilient to dynamic changes in the environment.

The final issue in the Project Requirements category is
Interaction. This category determines the methodology’s ability
to handle the interaction between system-level components as well
as entities outside the system such as human users and other
systems.

3. SURVEY
As the criteria above were developed from a number of literature
sources [8, 11], the compiled list was presented to software
engineering professionals in academia, industry, and government
through a survey questionnaire on the Internet for validation [9].
The purpose of the survey was to collect the opinions of software
engineering practitioners with regard to the importance of each of
the evaluation considerations to the overall decision.

In order to increase survey participation, an announcement was
distributed to software engineering professionals through
electronic mail lists maintained by the Object Management Group
(OMG), University of Maryland Agent Web, and the Software
Engineering Research Network at the University of Calgary. In
addition to these broadcast mailings, announcements requesting
participation were placed on related, moderated newsgroups—
comp.ai and comp.software-eng. Finally, requests were sent
directly to a number of respected academics, researchers, and
industry leaders.

3.1 Survey Analysis
The period for response collection was set at three weeks. Over
that period, thirty-three valid responses were collected. The
survey began with some basic demographic questions in order to
develop a profile of the responders. Of the thirty-three
responders, twenty-two people indicated that they were associated
with the academic community, three responders were associated
with government organizations, and eight were associated with the
industrial/commercial sector. As for experience, seventeen
indicated 1-5 years of experience in their field. Nine responders
categorized themselves as having 5-10 years of experience, and
seven responders indicated over 10 years of experience.

The survey also collected the opinions of the responders on the
importance of the evaluation consideration that were proposed for
the decision as well as their thoughts on the suggested factors, the
relative weighting of the management and technical categories,
and additional possible factors. As for the criteria proposed, the
responders were asked to rate each on a scale of zero to four.
Additionally, responders could leave considerations “not rated”.

The set of scores each factor received indicates that the responders
believed the technical issues are more important that the
management issues. Figure 1 shows the average scores each of
the considerations received. Again, based on this view of the data,
it is clear that the responders felt more emphasis should be on the
technical issues of the problem, rather than the issues related to
the management factor of the decision.

 The survey asked whether basing the weights for the evaluation
considerations relative to only the other considerations in the same
issues category was more appropriate than determining weights
relative to all of the considerations. The majority of responses
were to determine weights relative to all of the considerations.
Most responders did provide an opinion on the total weight each
of the major issues. Like the trend seen in Figure 1, fourteen
responders felt that the technical issues should impact the decision
more than the management issues. On the other hand, five

To be presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

4

responders felt that the management issues should weigh more on
the decision. Three responders indicated that both sets of issues
should have an equal weight. The remaining responders did not
specify a particular partitioning. Table 1 shows the data gathered
from this particular question.
Finally, the survey posed the question: what important factors are
missing? Several alternatives were suggested for the cost
category. Responders indicated that other factors would have
more significance to the problem such as a cost/benefit ratio, cost
savings, and productivity gains, because the benefit of the new
methodology, if it were great enough, would mitigate any impact
that the initial cost would have. Other management factors
suggested —availability of tools and experience base—would be
appropriate to evaluate the maturity of the methodology.

Considerations in this area included the availability of tools as
opposed to just the cost, and the experience base of the
methodology. Though requested, no suggestions for technical
issues were submitted.

Based on the research and the survey results, several changes were
made to the list of proposed evaluation considerations. Similar
categories, like Dynamic System Structure and Scalability, were
combined to form a single category, as were Organizational
Business Practices, Compliance with Standards, and Traceability
of Change; and the Cost of Acquiring the Methodology and Cost
of Acquiring Support Tools. Methodology Maturity was added to
the list in order to capture that aspect in the decision. The final
list of issues is:

Management Issues Technical Issues Number of Responses
10% 90% 2
25% 75% 1
30% 70% 2
33% 66% 1
35% 65% 3
40% 60% 3
45% 55% 2
50% 50% 3
60% 40% 2
75% 25% 3

No Partition 11

A v e ra g e R a t in g

2 .0 0 0

2 .2 0 0

2 .4 0 0

2 .6 0 0

2 .8 0 0

3 .0 0 0

3 .2 0 0

3 .4 0 0

M e th T o o l R e u s e O rg S ta n C h a n L e g D is E n v S tr In t S c a A g i

E va lu a t io n C o n s id e ra t io n

R
at

in
g

M a n a g e m e n t Is s u e s T e c h n ic a l Is s u e s

Figure 1: Average Rating for Proposed Evaluation Considerations

Table 1: Weighting Partition

To be presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

5

) () (= ∑
∀

X v w X V

i
iii

int dss, ar, env, dis, ent, reuse, mat, bus, cost, where = i

• Management Issues

o Cost of Acquiring Methodology and Tools

o Organizational Business Practices

o Availability of Reusable Components

o Methodology Maturity

• Project Requirements

o Legacy System Integration

o Distribution

o Environment

o Dynamic Structure and Scalability

o Agility and Robustness

o Interaction

4. APPLICATION OF CRITERIA
Our research included the development of a decision-making
process built upon a decision analysis framework [9]. This
section describes how the criteria specified above are incorporated
into the selected strategic decision-making technique.

The strategic decision-making technique selected for the problem
of methodology selection is Multiobjective Decision Analysis [6].
Multiobjective Decision Analysis was selected as the underlying
framework because (1) of its ability to handle multiple criteria, (2)
it is based on a mathematical framework, (3) it is a flexible
technique, and (4) it is a mature technique.

4.1 The Decision Analysis Tool
The first step in decision-making based on the Multiobjective
Decision Analysis is the development of a value hierarchy. A
value hierarchy is tree-like structure used for capturing evaluation
considerations, objectives, and evaluation measures relevant to the
decision. Evaluation considerations are criteria that need to be
taken into account when evaluating alternatives. An objective is
the preferred movement with respect to an evaluation
consideration. An evaluation measure is a scale for measuring the
degree of attainment of an objective.

For the methodology selection problem, the issues, described in
Section 4, map directly to evaluation considerations in the
decision problem’s value hierarchy shown in Figure 2. The
objectives of the evaluation considerations, with the exception of
Cost of Acquiring Methodology and Tools, are to maximize the
rating of the methodology’s ability to represent the issues. For
Cost of Acquiring Methodology and Tools, the objective is to
minimize the real dollar cost involved with acquiring the
methodology and supporting tools.

In order to measure the evaluation considerations, a set of
questions has been developed for each. Like the questions
developed for the selection of a methodology for developing real-
time systems, the questions are designed to measure the
methodology’s ability to represent the relevant issues [12].
Unlike the system of questions in [12], the decision-maker is
asked to rate each question on a scale of zero to four. In order to
capture the information, a series of worksheets have been created
in [9] that collect the data, as well as provide the decision-maker
with guidelines for rating each question. The purpose of the

guidelines is to provide a standard for decision-makers to use
while evaluating a set of subjective questions.

Figure 2: Methodology Selection Value Hierarchy

The Multiobjective Decision Analysis technique provides the
decision-maker with a normalized score representing the fitness of
an alternative with regard to the problem. This score, called the
multiobjective fitness value is the additive combination of the
product of the weight, w, and rating for each evaluation
consideration, v. Equation 1 is the multiobjective fitness function
for the decision analysis tool.

 (1)

Weights are used to capture the level of importance the decision-
maker places on a particular evaluation consideration. The
weights make this technique flexible. The weights of evaluation
considerations that are not important to the decision can be set to
zero, effectively taking the evaluation consideration out of the
decision.

What is a good
software engineering
method that my
organization can use to
reduce development
costs and produce
quality products?

Management
Issues

Project
Requirements

Enterprise Integration

Distribution

Environment

Dynamic Structure & Scalability

Interaction

Agility and Robustness

Cost of Acquiring
Methodology & Tool Support

Component Reuse

Organizational Business
Practices

Methodology Maturity

To be presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

6

4.2 Application of Decision Analysis Tool
The process of making the decision is captured in a decision
analysis tool. This tool is the encapsulation of several data
gathering steps and algebraic calculations. The process, itself, is
defined by four steps:

1. Weight the Evaluation Considerations

2. Rate the Relevant Evaluation Considerations

3. Calculate the Multiobjective Fitness Value

4. Determine the Best Alternative

Weighting the Evaluation Considerations involves determining
which of the evaluation considerations are important to the
particular software requirements problem that the decision-maker
is trying to select a methodology. After determining the relevant
considerations, the decision-maker determines a raw weighting
for each consideration based on the relative importance each
consideration has with regard to the least important evaluation
consideration. The raw weights are then normalized for use in the
decision analysis.

For example, one of the case studies evaluated in [9] was based on
the system requirements for a content search system [10]. The
content search system is a distributed software application in
which the users of the system are able to search data files
throughout the users’ network for key words or phrases. Based on
the evaluation consideration in Figure 2, each of the categories
and the analysis decision made as to whether or not the
consideration is relevant are shown below.

� Cost of Acquiring Methodology and Support Tools –
Relevant. The approach to this problem is that the software
engineer is part of an organization that is looking to adopt
the methodology and supporting tools.

� Organizational Business Practices – Relevant. Although
the software engineer is the only employee in the fledgling
department, the engineer does have the responsibility of
providing project updates to other interested parties outside
of the department.

� Methodology Maturity – Relevant. The decision to change
to a new methodology will require some degree of evidence
that it will produce quality software.

� Integration of Reusable Components – Irrelevant. A library
of reusable components is not available to the software
engineer.

� Legacy System Integration – Irrelevant. The system is not
required to incorporate any existing software systems.

� Distribution – Relevant. The users of the system will
require access from different nodes on the network.
Likewise, the data that the users will require is stored on
many hard drives throughout the network.

� Environment – Relevant. The environment of the network is
a mixture of Sun Workstations running Solaris OS and
Personal Computers running Windows NT.

� Agility and Robustness – Relevant. The users of the system
will expect predictability and reliability.

� Dynamic Structure and Scalability – Relevant. The
organization is growing and as new employees are hired,
the hardware systems they are given will need to be linked
to the software system for access and data storage.

� Interaction – Relevant. The system must provide an
interface for the user to submit requests.

After determining the relevance of each evaluation consideration,
the decision-maker specifies weights for each. The raw weight is
based on the level of importance each evaluation consideration
has relative to the least important consideration. After the raw, or
relative, weighting is complete, the normalized weights can be
calculated. For this particular case study, the results of the
relative weighting and normalization are shown in Table 2, the
details for the calculation can be found in [9].

Table 2: Content Search Weighting Summary

Next, the decision-maker Rates the Relevant Evaluation
Considerations for each of the methodologies being considered.
For each of the evaluation considerations considered relevant in
the Step 1, the decision-maker rates the consideration by
answering the respective set of questions developed during the
research with respect to each alternative [9].
This research evaluated an object-oriented software engineering
methodology developed by Booch [1] and an agent-oriented
software engineering methodology, called Multiagent System
Engineering (MaSE), developed at the Air Force Institute of
Technology [2] as alternatives for developing solutions to the
content search problem. The documentation of the ratings can be
found in [9]. For each relevant evaluation consideration, a single-
dimensional value function gives the rating based on the input
from the user. Table 3 summarizes the ratings of each evaluation
consideration for the respective methodologies.

Table 3: Content Search Rating Summary

After rating each set of questions, the decision-maker has the last
information needed to Calculate the Multiobjective Fitness
Values. Using Equation 1, the weights and ratings are combined
to form a single fitness value for each alternative. In the case of
the evaluation considerations that were determined to be
irrelevant, the term can be dropped or a zero can be entered. An
example of the calculation is shown below for the MaSE
alternative.

Rank Evaluation
Consideration

Relative
Weight

Normalized
Weight

1 Cost 1 0.172
1 Dis 1 0.172
1 Env 1 0.172
1 Int 2 0.172
2 AR 1 0.086
2 DSS 1.25 0.086
3 Mat 1 0.069
3 Org 0.069

Evaluation
Consideration

SDVF Fitness
– MaSE

SDVF Fitness
– Booch

Cost 0.937 0.591
Dis 0.750 0.500
Env 0.833 0.833
Int 0.500 0.833
AR 0.417 0.250

DSS 0.750 0.625
Mat 0.333 1.000
Org 0.679 0.714

To be presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

7

VMaSE(X) = wcostvcost(xcost) + worgvorg(xorg) + wmatvmat(xmat)
 + wdisvdis(xdis) + wenvvenv(xenv) + warvar(xar)
 + wdssvdss(xdss) + wintvint(xint)
 = 0.172 vcost(1690) + 0.069 vorg(19) + 0.069 vmat(4)
 + 0.172 vdis(9) + 0.172 venv(10) + 0.086 var(5)
 + 0.086 vdss(6) + 0.172 vint(6)
 = 0.161 + 0.047 + 0.023
 + 0.129 + 0.143 + 0.036
 + 0.065 + 0.086
 = 0.689

The summary of multiobjective fitness values (MFV) is shown
below in Table 4.

Table 4: Content Search MFV Summary

Case Study MaSE MFV Booch MFV
Content Search

System 0.689 0.668

With the multiobjective fitness values for each alternative, the
decision-maker has a quantified value to base the decision. For
this example, the decision analysis tool recommends MaSE over
Booch. In cases where the results are close, there are a number of
techniques for evaluating the sensitivity of the decision based on
the weights assigned in step 1.
4.3 Validation of Decisions
The decision analysis tool was demonstrated on a number of
example software requirements in [9]. The challenge with
validating the decision the tool returns is that the decision is being
made based on subjective criteria. As an example, the software
requirement for the content search was developed via the two
rated methodologies—MaSE and Booch.

During the development process, a set of metrics was collected.
The metrics collected focused on the productivity of the
developer. They included labor hours spent developing the
analysis and design models and the implementation, the size of
the programs measured in lines of code and number of
components, and the complexity of the developed code.

The time spent analyzing and designing the systems were similar,
but more time was spent on the object-oriented implementation.
The size of the agent-oriented code was roughly twice as large as
the object-oriented code. The data collected is shown in Table 5.

In addition to collecting the metrics, a questionnaire was
distributed to a class of software engineering graduate students.

The purpose of the questionnaire was to determine whether or not
the certain details of the system’s requirements were identifiable
within the analysis and design models of the respective
methodologies. The students reviewing the agent-oriented
analysis and design models scored higher than those reviewing the
object-oriented. This corresponds with the decision analysis
tool’s determination that the agent-oriented methodology was
more appropriate the requirement [9].

The first set of questions the respondents answered was to their
familiarity with methodologies they were evaluating. Eight of the
nine students reviewing the Booch models indicated that they
were familiar with the methodology, and five of those indicated
that they had developed systems using the methodology in the
past. Only six of ten students indicated that they were familiar
with the MaSE methodology, and of those, only five students had
actually used the methodology for system development. These
results were not unexpected as MaSE is a recently defined agent-
oriented methodology and Booch’s object-oriented methodology
is much more mature. Asked to identify other methodologies with
which they are familiar, the students indicated object-oriented
techniques, functional decomposition techniques, and ad hoc
methods for developing software.

The next question was a general question about the respondents’
confidence that they understood the models. Each was asked to
rate his confidence on a scale of zero to four, with four indicating
the greatest confidence in understanding the system. On the
average, the understanding rating for the students evaluating the
MaSE methodology was 3.2. The rating was 3.125 for the
students evaluating the Booch methodology. Seven of the eight
students reviewing the Booch methodology were able to identify
the correct statement of description for the system. Only two of
the ten students reviewing the MaSE methodology were able to
select the correct statement; the other eight students selected the
“nearly” correct answer.

The next set of questions looked at a number of details in the
models, including the identification of legacy systems, reusable
components, the network environment, and interface issues. The
students reviewing the Booch methodology were divided equally
with regard to identifying a legacy system. Based on the fact that
there was not a legacy system incorporated in this system and the
responses as to what the legacy system could possibly be, the
naming convention was likely the reason for the misidentification.
Only one student misidentified the legacy system in the set of
MaSE models.

Determining the network environment was the intention of several
questions. Identifying the configuration of the network the system

Table 5: Content Search Development Metrics
Metric MaSE Approach Booch Approach
Modeling Effort – Analysis 4.83 labor hours 4.53 labor hours
Modeling Effort – Design 2.17 labor hours 4.08 labor hours
Modeling Effort – Implementation 8.17 labor hours 11.75 labor hours
Size – SLOC 1252 638
Size – Classes 20 11
Cyclomatic Complexity 74 6
Size/Effort Ratio 153.2 SLOC/labor hour 54.3 SLOC/labor hour

To be presented at the Second International Workshop On Agent-Oriented Software Engineering (AOSE-2001)
Montreal, Canada - May 29th 2001

8

was being designed for is important information that needs to be
communicated to the developers. These questions measured the
respondents’ ability to discover this environment information.
The group evaluating the MaSE example was able to more
completely identify the hardware and software system
components in the models. With regard to the user interface, both
groups were able to identify the input and output of the systems as
well as the options.

Based on the scoring included next to each question on the
questionnaire in [9], the average scores are 25.5 for the MaSE
group and 25.4 for the Booch group. Furthermore, by considering
the results for the students who were familiar and experienced
with the respective methodology, the average score for the MaSE
group was 27.2 and for the Booch group was 25.1.

The student responses pointed out positives and negatives
associated with each approach. However, the results of this
experiment are consistent with the results produced by our
decision analysis tool.

5. CONCLUSIONS
The reasons for software engineering methodologies are clear:
develop a high quality software product at the least cost. When
faced with the challenge of creating one of these high quality/low
cost products, it is necessary to use the methodology that best fits
the problem. The challenge is, “how do you decide what the best
method is?”

The challenge becomes even greater as methodologies are
developed that specifically address new technologies, such as the
development of multiagent systems. Agent-oriented software
engineering provides a different way of looking at the same
problem by raising the level of abstraction. The solution for this
is to be able to classify different software engineering
methodologies quantitatively based on the software requirement at
hand.

The challenge in this is developing a set of criteria that represents
the problem space. To generalize this problem space, we
developed a set of criteria from current software engineering
literature. To ensure that others agree with our criteria, we invited
various members of the software engineering community to
participate in a survey. Based on the results of this survey, we
adjusted the criteria to include additional factors that we missed as
well as to remove criteria the community did not find important.

The method provides the user with the ability to determine the
best methodology for a particular problem. There is still an
outstanding question of when to use multiagent systems. The
challenge with this is that there does not exist a large body of
evidence to support the hypotheses that multiagent systems are
superior to traditional systems. Because there is currently so
much research focused on developing new methodologies, more
multiagent systems will inevitably be created, which, in turn, will
create a larger body of data to compare with traditional systems.
6. ACKNOWLEDGEMENTS
The Air Force Office of Scientific Research sponsored this
research. The views expressed in this article are those of the
authors and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the US
Government.

REFERENCES
[1] Booch, G., Object-Oriented Analysis and Design with

Applications. Redwood City, CA: The Benjamin/Cummings
Publishing Company, 1994.

[2] DeLoach, S.A., Wood, M.F., Sparkman, C.H., Multiagent
System Engineering. International Journal of Software
Engineering and Knowledge Engineering (To Appear).

[3] Firth, R., et al. A Classification Scheme for Software
Development Methods. Software Engineering Institute
Technical Report 87-TR-41. Software Engineering Institute,
Carnegie-Mellon University, Pittsburgh, PA (1987).

[4] Iglesias, C.A., Garijo, M., and Gonzalez, J.C., A Survey of
Agent-Oriented Methodologies in Intelligent Agents V –
Proceedings of the Fifth International Workshop on Agent
Theories, Architectures, and Languages (ATAL-98), Lecture
Notes in Artificial Intelligence. Heidelberg: Springer-Verlag,
1998.

[5] Jennings, N.R., and Wooldridge, M.J.. Agent-Oriented
Software Engineering in Handbook of Agent Technology, ed.
J. Bradshaw, AAI/MIT Press (To Appear).

[6] Kirkwood, C. W., Strategic Decision Making: Multiobjective
Decision Analysis with Spreadsheets. Belmont, California:
Wadsworth Publishing, 1997.

[7] Lesser, V.R., Cooperative Multiagent Systems: A Personal
View of the State of the Art. IEEE Transactions on
Knowledge and Data Engineering Vol 11, No 1 (Jan-Feb
1999), 133-142.

[8] MESSAGE: Methodology for Engineering Systems of
Software Agents – Initial Methodology. EURESCOM
Participants in Project P907-GI, July 2000.

[9] O’Malley, S.A., Selecting a Software Engineering
Methodology Using Multiobjective Decision Analysis,
AFIT/GCS/ENG/01M-08. School of Engineering and
Management, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH (March 2001).

[10] O’Malley, S.A., Self A., and DeLoach, S.A., Comparing
Performance of Static versus Mobile Multiagent Systems, in
Proceedings of NAECON 2000. Dayton, OH, (Oct 2000).

[11] Shen, W. and Norrie, D., Agent-Based Systems for
Intelligent Manufacturing: A State-of the-Art Survey.
Knowledge and Information Systems, an International
Journal. Vol 1, Num 2 (1999), 129-156.

[12] Wood, B., Pethia, R., Gold, L.R., and Firth, R., A Guide to
the Assessment of Software Development Methods.
Software Engineering Institute Technical Report 88-TR-8.
Software Engineering Institute, Carnegie-Mellon University,
Pittsburgh, PA (1988).

[13] Wooldridge, M.J., Intelligent Agents in Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence.
Gerhard Weiss ed. Cambridge, Mass: MIT Press, 1999.

